Sains Malaysiana 53(3)(2024): 487-499
http://doi.org/10.17576/jsm-2024-5303-02
Wind
Profiles in Peninsular Malaysia: A Comprehensive Upper Air Analysis
(Profil Angin di Semenanjung Malaysia: Suatu Analisis Komprehensif Udara Atas)
MOHD
SHAHIDI ALIAS1,*, AZMIN SHAKRINE MOHD RAFIE1, MOHD FAISAL ABDUL HAMID1, EZANEE GIRES1 & KHAIRUL DAHRI MOHD ARIS2
1Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
2Aerospace
Engineering Section, Universiti Kuala Lumpur Malaysian Institute of Aviation
Technology, 43900 Dengkil, Selangor, Malaysia
Received: 16 August 2023/Accepted: 16 February 2024
Abstract
Understanding
the atmospheric properties and patterns is crucial in empowering Malaysia's
national aerospace blueprint, national space, and legislation. While various
policies have been enacted and implemented, there is a lack of information on
the wind profile, specifically the upper air across Peninsular Malaysia. Realising the need to establish a standard guideline for
national reference, future research, space-aerospace application, and
legislation, this study was performed to develop the first
wind profile analysis of upper air in Peninsular Malaysia. Relevant data from the Malaysian Meteorology
Department was collected for analysis and evaluation. Specifically, a
meteorology balloon attached with a sounding radiosonde was used to record data
at 0000UTC (0800 h LT) and 1200UTC (2000 h LT) on the 15th day of
each month for 7 years (from 2015 to 2021) at the KLIA and Kuantan Meteorology Stations for the wind profiling
analysis. The daily overall data collection was recorded accurately once the
balloon's rising rate stabilises from vertical air
current (katabatic or anabatic winds). Subsequently, the collected data were
evaluated in terms of the minimum, maximum, and average wind speeds for each
year and time. Finally, the average wind speed of each year and time were
combined to generate the Peninsular Malaysia wind profile. Based on the
results, the projected wind profile for both stations identified three peaks of discrete sine wave flow type
with low-speed wind profile in Peninsular Malaysia. The three peaks amplified
the highest air velocity, whereby the 1st and 2nd peaks
were located at the troposphere layer from 9,000 m to 12,000 m altitude
(average wind speed of 10.8 ms-1) and 12,000 m to 18,000 m altitude
(average wind speed of 13.7 ms-1). The 3rd peak was
located at the stratosphere layer from 18,000 m to 32,000 m altitude (average
wind speed of 15.2 ms-1). Since East Malaysia is located on the same
equatorial line, the wind profile is hypothetically the same and exhibits only
slight differences. In short, the established wind profile of upper air in
Peninsular Malaysia in this study would facilitate other future studies and
assist long-term planning of Malaysia's airspace legislation.
Keywords: Meteorology; stratosphere; troposphere; wind
profile; wind speed
Abstrak
Bagi memperkasakan pelan tindakan aeroangkasa negara, ruang angkasa lepas negara dan perundangan, memahami atmosfera menjadi penting bagi pereka bentuk, jurutera, penyelidik dan perundangan. Kerja ini bertujuan untuk menjana profil angin untuk Semenanjung Malaysia untuk rujukan negara, penyelidikan masa depan, aplikasi angkasa-aeroangkasa dan perundangan. Oleh kerana sumber yang sangat terhad untuk memahami atmosfera Semenanjung Malaysia,
data udara daripada Jabatan Meteorologi Malaysia telah dimanfaatkan. Proses dijalankan menggunakan belon meteorologi dengan radiosonde bunyi di Stesen Meteorologi KLIA (Semenanjung Barat) dan Stesen Meteorologi Kuantan (Semenanjung Timur). Data telah dikumpul selama 7 tahun pada setiap hari ke-15 setiap bulan dari 2015 hingga 2021. Data udara ini telah dinilai dan dianalisis berdasarkan ketinggian. Hasilnya, unjuran profil angin bagi kedua-dua stesen telah mengenal pasti 3 puncak aliran gelombang sinus jenis profil angin kelajuan rendah secara diskret di Semenanjung Malaysia. Puncak Pertama dan Puncak Kedua terletak di lapisan Troposfera antara 9,000 m hingga 12,000 m ketinggian dengan purata kelajuan angin 10.8 ms-1 dan ketinggian 12,000 m hingga 18,000
m dengan kelajuan angin purata 13.7 ms-1 manakala Puncak Ketiga terletak di Stratosfera, lapisan antara 18,000 m ke ketinggian 32,000 m dengan kelajuan angin purata 15.2 ms-1. Semenanjung Malaysia dan Malaysia Timur berada di garisan khatulistiwa, oleh itu, hasilnya secara hipotesis serupa untuk kajian pendekatan masa hadapan untuk penyelidik, jurutera dan perundangan.
Kata kunci: Atmosfera; kelajuan angin; meteorologi; profil angin; Semenanjung Malaysia
REFERENCES
Abubaker, A., Kostić, I. & Kostić, O.
2018. Numerical modelling of velocity profile parameters of the atmospheric
boundary layer simulated in wind tunnels. IOP Conference Series: Materials
Science and Engineering 393: 012025.
https://doi.org/10.1088/1757-899X/393/1/012025
Ahmad, A.S., Yusuf, M.A.M., Majid, M.S., Rahman, H.A.
& Hassan, M.Y. 2018. Wind power harnessing based on senai meteorological
data, Malaysia. International Journal of Computational Intelligence in
Control 10(1): 7-16.
Civil Aviation Authority of Malaysia. 2021a.
Aeronautical Charts. CAD 4, 1 Revision 0.
Civil Aviation Authority of Malaysia. 2021b.
Aeronautical Telecommunications Communication Procedures Including Those with
Pans Status. CAD 10, II(1 Revision 0).
Fakaruddin, F.J., Yip, W.S., Mat Adam, M.K., Chang,
N.K. & Abdullah, M.H. 2017. Analysis of the Northeast Monsoon 2016/2017. Research Publication No. 1/2017. Petaling Jaya: Malaysian Meteorological
Department.
Finocchio, P.M. & Majumdar, S.J. 2017. A
statistical perspective on wind profiles and vertical wind shear in tropical
cyclone environments of the northern hemisphere. Monthly Weather Review 145(1): 361-378. https://doi.org/10.1175/MWR-D-16-0221.1
Google Earth. (n.d.).
https://earth.google.com/web/search/malaysia Accessed on 17 September 2022.
Gryning, S.E., Jørgensen, H., Larsen, S. &
Batchvarova, E. 2007. The wind profile up to 300 meters over flat terrain. Journal
of Physics: Conference Series 75: 012066.
https://doi.org/10.1088/1742-6596/75/1/012066
He, J.Y., Hon, K.K., Li, Q.S. & Chan, P.W. 2022.
Wind profile analysis for selected tropical cyclones over the South China Sea
based on dropsonde measurements. Atmosfera, 35(1): 111-126.
https://doi.org/10.20937/ATM.52900
Jena, S. & Gairola, A. 2022. Novel boundary
conditions for investigation of environmental wind profile induced due to
raised terrains and their influence on pedestrian winds authors. Journal of
Advanced Research in Applied Sciences and Engineering Technology 27(1):
77-85. https://doi.org/10.37934/araset.27.1.7785
Jet Stream | National Geographic Society. (n.d.).
https://education.nationalgeographic.org/resource/jet-stream Accessed on 20
September 2022.
Johnson, D.L. & Vaughan, W.W. 2017. Natural
terrestrial environment from selected field data measurements: Results and
applications for launch vehicle development. Journal of Aerospace Technology
and Management 9(1): 5-17. https://doi.org/10.5028/jatm.v9i1.636
Lopez-Villalobos, C.A., Martínez-Alvarado, O.,
Rodriguez-Hernandez, O. & Romero-Centeno, R. 2022. Analysis of the
influence of the wind speed profile on wind power production. Energy Reports 8: 8079-8092. https://doi.org/10.1016/j.egyr.2022.06.046
Martins, A., Carvalho, A. & Sousa, J.A.M. 2015.
Comparing wind generation profiles: A circular data approach. 12th
International Conference on the European Energy Market, EEM, Lisbon,
Portugal. pp. 1-5. https://doi.org/10.1109/EEM.2015.7216766
Pietersen, H.P., De Arellano Vilà-Guerau, J.,
Augustin, P., Van De Boer, A., De Coster, O., Delbarre, H., Durand, P.,
Fourmentin, M., Gioli, B., Hartogensis, O., Lohou, F., Lothon, M., Ouwersloot,
H.G., Pino, D. & Reuder, J. 2015. Study of a prototypical convective
boundary layer observed during BLLAST: Contributions by large-scale forcings. Atmospheric
Chemistry and Physics 15(8): 4241-4257.
https://doi.org/10.5194/acp-15-4241-2015
Products | NORIS Group GmbH. (n.d.).
https://www.graw.de/products/ Accessed on 19 September 2022.
Sepang Meteorological Office to Kuartes Meteorologi
Pahang - Google Maps. (n.d.).
https://www.google.com/maps/dir/Sepang+Meteorological+Office, Accessed on 17
March 2023
Shu, Z.R., Li, Q.S., He, Y.C. & Chan, P.W. 2018.
Observational study of veering wind by Doppler wind profiler and surface
weather station. Journal of Wind Engineering and Industrial Aerodynamics 178: 18-25. https://doi.org/10.1016/j.jweia.2018.05.001
Sterlyadkin, V.V., Gorelik, A.G., Kulikovskii, K.V.,
Kalmykov, V.M., Ermilov, D.V. & Khomyakov, A.V. 2017. Field measurements of
the wind profile using millimeter doppler radar. Progress in
Electromagnetics Research Symposium. pp. 897-901.
https://doi.org/10.1109/PIERS.2017.8261871
Svensson, N., Arnqvist, J., Bergström, H., Rutgersson,
A. & Sahlée, E. 2019. Measurements and modelling of offshorewind profiles
in a semi-enclosed sea. Atmosphere 10(4): 194.
https://doi.org/10.3390/ATMOS10040194
Teneler, G. 2011. Wind flow analysis on a complex
terrain. MSc. Thesis. Visby: Gotland University (Unpublished).
https://www.diva-portal.org/smash/get/diva2:458063/FULLTEXT02.pdf
TOTEX Corporation/Meteorological Balloon. (n.d.).
https://totex.info/hinmoku_kikyu_e.html Accessed on 19 September 2022.
Varentsov, M., Stepanenko, V., Repina, I., Artamonov,
A., Bogomolov, V., Kuksova, N., Marchuk, E., Pashkin, A. & Varentsov, A.
2021. Balloons and quadcopters: Intercomparison of two low-cost wind profiling
methods. Atmosphere 12(3): 380. https://doi.org/10.3390/atmos12030380
Voss, H.D., Ramm, N.A. & Dailey, J. 2012.
Understanding high-altitude balloon flight fundamentals. Academic High
Altitude Conference 2012(1): 74-83. doi: https://doi.org//ahac.8327
Wind | SKYbrary Aviation Safety. (n.d.).
https://skybrary.aero/articles/wind Accessed on 18 September 2022.
*Corresponding author; email: m.shahidi@unikl.edu.my
|