Sains Malaysiana 53(3)(2024): 487-499

http://doi.org/10.17576/jsm-2024-5303-02

 

 

Wind Profiles in Peninsular Malaysia: A Comprehensive Upper Air Analysis

(Profil Angin di Semenanjung Malaysia: Suatu Analisis Komprehensif Udara Atas)

MOHD SHAHIDI ALIAS1,*, AZMIN SHAKRINE MOHD RAFIE1, MOHD FAISAL ABDUL HAMID1, EZANEE GIRES1 & KHAIRUL DAHRI MOHD ARIS2

 

1Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

2Aerospace Engineering Section, Universiti Kuala Lumpur Malaysian Institute of Aviation Technology, 43900 Dengkil, Selangor, Malaysia

 

Received: 16 August 2023/Accepted: 16 February 2024

 

Abstract

Understanding the atmospheric properties and patterns is crucial in empowering Malaysia's national aerospace blueprint, national space, and legislation. While various policies have been enacted and implemented, there is a lack of information on the wind profile, specifically the upper air across Peninsular Malaysia. Realising the need to establish a standard guideline for national reference, future research, space-aerospace application, and legislation, this study was performed to develop the first wind profile analysis of upper air in Peninsular Malaysia. Relevant data from the Malaysian Meteorology Department was collected for analysis and evaluation. Specifically, a meteorology balloon attached with a sounding radiosonde was used to record data at 0000UTC (0800 h LT) and 1200UTC (2000 h LT) on the 15th day of each month for 7 years (from 2015 to 2021) at the KLIA and Kuantan Meteorology Stations for the wind profiling analysis. The daily overall data collection was recorded accurately once the balloon's rising rate stabilises from vertical air current (katabatic or anabatic winds). Subsequently, the collected data were evaluated in terms of the minimum, maximum, and average wind speeds for each year and time. Finally, the average wind speed of each year and time were combined to generate the Peninsular Malaysia wind profile. Based on the results, the projected wind profile for both stations identified three peaks of discrete sine wave flow type with low-speed wind profile in Peninsular Malaysia. The three peaks amplified the highest air velocity, whereby the 1st and 2nd peaks were located at the troposphere layer from 9,000 m to 12,000 m altitude (average wind speed of 10.8 ms-1) and 12,000 m to 18,000 m altitude (average wind speed of 13.7 ms-1). The 3rd peak was located at the stratosphere layer from 18,000 m to 32,000 m altitude (average wind speed of 15.2 ms-1). Since East Malaysia is located on the same equatorial line, the wind profile is hypothetically the same and exhibits only slight differences. In short, the established wind profile of upper air in Peninsular Malaysia in this study would facilitate other future studies and assist long-term planning of Malaysia's airspace legislation.

 

Keywords: Meteorology; stratosphere; troposphere; wind profile; wind speed

 

Abstrak

Bagi memperkasakan pelan tindakan aeroangkasa negara, ruang angkasa lepas negara dan perundangan, memahami atmosfera menjadi penting bagi pereka bentuk, jurutera, penyelidik dan perundangan. Kerja ini bertujuan untuk menjana profil angin untuk Semenanjung Malaysia untuk rujukan negara, penyelidikan masa depan, aplikasi angkasa-aeroangkasa dan perundangan. Oleh kerana sumber yang sangat terhad untuk memahami atmosfera Semenanjung Malaysia, data udara daripada Jabatan Meteorologi Malaysia telah dimanfaatkan. Proses dijalankan menggunakan belon meteorologi dengan radiosonde bunyi di Stesen Meteorologi KLIA (Semenanjung Barat) dan Stesen Meteorologi Kuantan (Semenanjung Timur). Data telah dikumpul selama 7 tahun pada setiap hari ke-15 setiap bulan dari 2015 hingga 2021. Data udara ini telah dinilai dan dianalisis berdasarkan ketinggian. Hasilnya, unjuran profil angin bagi kedua-dua stesen telah mengenal pasti 3 puncak aliran gelombang sinus jenis profil angin kelajuan rendah secara diskret di Semenanjung Malaysia. Puncak Pertama dan Puncak Kedua terletak di lapisan Troposfera antara 9,000 m hingga 12,000 m ketinggian dengan purata kelajuan angin 10.8 ms-1 dan ketinggian 12,000 m hingga 18,000 m dengan kelajuan angin purata 13.7 ms-1 manakala Puncak Ketiga terletak di Stratosfera, lapisan antara 18,000 m ke ketinggian 32,000 m dengan kelajuan angin purata 15.2 ms-1. Semenanjung Malaysia dan Malaysia Timur berada di garisan khatulistiwa, oleh itu, hasilnya secara hipotesis serupa untuk kajian pendekatan masa hadapan untuk penyelidik, jurutera dan perundangan.

 

Kata kunci: Atmosfera; kelajuan angin; meteorologi; profil angin; Semenanjung Malaysia

 

REFERENCES

Abubaker, A., Kostić, I. & Kostić, O. 2018. Numerical modelling of velocity profile parameters of the atmospheric boundary layer simulated in wind tunnels. IOP Conference Series: Materials Science and Engineering 393: 012025. https://doi.org/10.1088/1757-899X/393/1/012025

Ahmad, A.S., Yusuf, M.A.M., Majid, M.S., Rahman, H.A. & Hassan, M.Y. 2018. Wind power harnessing based on senai meteorological data, Malaysia. International Journal of Computational Intelligence in Control 10(1): 7-16.

Civil Aviation Authority of Malaysia. 2021a. Aeronautical Charts. CAD 4, 1 Revision 0.

Civil Aviation Authority of Malaysia. 2021b. Aeronautical Telecommunications Communication Procedures Including Those with Pans Status. CAD 10, II(1 Revision 0).

Fakaruddin, F.J., Yip, W.S., Mat Adam, M.K., Chang, N.K. & Abdullah, M.H. 2017. Analysis of the Northeast Monsoon 2016/2017. Research Publication No. 1/2017. Petaling Jaya: Malaysian Meteorological Department.

Finocchio, P.M. & Majumdar, S.J. 2017. A statistical perspective on wind profiles and vertical wind shear in tropical cyclone environments of the northern hemisphere. Monthly Weather Review 145(1): 361-378. https://doi.org/10.1175/MWR-D-16-0221.1

Google Earth. (n.d.). https://earth.google.com/web/search/malaysia Accessed on 17 September 2022.

Gryning, S.E., Jørgensen, H., Larsen, S. & Batchvarova, E. 2007. The wind profile up to 300 meters over flat terrain. Journal of Physics: Conference Series 75: 012066. https://doi.org/10.1088/1742-6596/75/1/012066

He, J.Y., Hon, K.K., Li, Q.S. & Chan, P.W. 2022. Wind profile analysis for selected tropical cyclones over the South China Sea based on dropsonde measurements. Atmosfera, 35(1): 111-126. https://doi.org/10.20937/ATM.52900

Jena, S. & Gairola, A. 2022. Novel boundary conditions for investigation of environmental wind profile induced due to raised terrains and their influence on pedestrian winds authors. Journal of Advanced Research in Applied Sciences and Engineering Technology 27(1): 77-85. https://doi.org/10.37934/araset.27.1.7785

Jet Stream | National Geographic Society. (n.d.). https://education.nationalgeographic.org/resource/jet-stream Accessed on 20 September 2022.

Johnson, D.L. & Vaughan, W.W. 2017. Natural terrestrial environment from selected field data measurements: Results and applications for launch vehicle development. Journal of Aerospace Technology and Management 9(1): 5-17. https://doi.org/10.5028/jatm.v9i1.636

Lopez-Villalobos, C.A., Martínez-Alvarado, O., Rodriguez-Hernandez, O. & Romero-Centeno, R. 2022. Analysis of the influence of the wind speed profile on wind power production. Energy Reports 8: 8079-8092. https://doi.org/10.1016/j.egyr.2022.06.046

Martins, A., Carvalho, A. & Sousa, J.A.M. 2015. Comparing wind generation profiles: A circular data approach. 12th International Conference on the European Energy Market, EEM, Lisbon, Portugal. pp. 1-5. https://doi.org/10.1109/EEM.2015.7216766

Pietersen, H.P., De Arellano Vilà-Guerau, J., Augustin, P., Van De Boer, A., De Coster, O., Delbarre, H., Durand, P., Fourmentin, M., Gioli, B., Hartogensis, O., Lohou, F., Lothon, M., Ouwersloot, H.G., Pino, D. & Reuder, J. 2015. Study of a prototypical convective boundary layer observed during BLLAST: Contributions by large-scale forcings. Atmospheric Chemistry and Physics 15(8): 4241-4257. https://doi.org/10.5194/acp-15-4241-2015

Products | NORIS Group GmbH. (n.d.). https://www.graw.de/products/ Accessed on 19 September 2022.

Sepang Meteorological Office to Kuartes Meteorologi Pahang - Google Maps. (n.d.). https://www.google.com/maps/dir/Sepang+Meteorological+Office, Accessed on 17 March 2023

Shu, Z.R., Li, Q.S., He, Y.C. & Chan, P.W. 2018. Observational study of veering wind by Doppler wind profiler and surface weather station. Journal of Wind Engineering and Industrial Aerodynamics 178: 18-25. https://doi.org/10.1016/j.jweia.2018.05.001

Sterlyadkin, V.V., Gorelik, A.G., Kulikovskii, K.V., Kalmykov, V.M., Ermilov, D.V. & Khomyakov, A.V. 2017. Field measurements of the wind profile using millimeter doppler radar. Progress in Electromagnetics Research Symposium. pp. 897-901. https://doi.org/10.1109/PIERS.2017.8261871

Svensson, N., Arnqvist, J., Bergström, H., Rutgersson, A. & Sahlée, E. 2019. Measurements and modelling of offshorewind profiles in a semi-enclosed sea. Atmosphere 10(4): 194. https://doi.org/10.3390/ATMOS10040194

Teneler, G. 2011. Wind flow analysis on a complex terrain. MSc. Thesis. Visby: Gotland University (Unpublished). https://www.diva-portal.org/smash/get/diva2:458063/FULLTEXT02.pdf

TOTEX Corporation/Meteorological Balloon. (n.d.). https://totex.info/hinmoku_kikyu_e.html  Accessed on 19 September 2022.

Varentsov, M., Stepanenko, V., Repina, I., Artamonov, A., Bogomolov, V., Kuksova, N., Marchuk, E., Pashkin, A. & Varentsov, A. 2021. Balloons and quadcopters: Intercomparison of two low-cost wind profiling methods. Atmosphere 12(3): 380. https://doi.org/10.3390/atmos12030380

Voss, H.D., Ramm, N.A. & Dailey, J. 2012. Understanding high-altitude balloon flight fundamentals. Academic High Altitude Conference 2012(1): 74-83. doi: https://doi.org//ahac.8327

Wind | SKYbrary Aviation Safety. (n.d.). https://skybrary.aero/articles/wind  Accessed on 18 September 2022.

 

*Corresponding author; email: m.shahidi@unikl.edu.my

 

 

 

 

 

 

 

 

 

 

previous